Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
JCI Insight ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687615

RESUMEN

A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole sporozoite PfSPZ Vaccine in African infants. Innate immune activation and myeloid signatures at pre-vaccination baseline correlated with protection from Pf parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ Vaccine dose. Machine learning identified spliceosome, proteosome, and resting dendritic cell signatures as pre-vaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline CSP-specific IgG predicted non-protection. Pre-vaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T-cell responses post-vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naïve mice while diminishing the CD8+ T-cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity of whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggest that PfSPZ Vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.

2.
Nat Commun ; 14(1): 7988, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042951

RESUMEN

The properties of superheavy elements probe extremes of physics and chemistry. They are synthesised at accelerator laboratories using nuclear fusion, where two atomic nuclei collide, stick together (capture), then with low probability evolve to a compact superheavy nucleus. The fundamental microscopic mechanisms controlling fusion are not fully understood, limiting predictive capability. Even capture, considered to be the simplest stage of fusion, is not matched by models. Here we show that collisions of 40Ca with 208Pb, experience an 'explosion' of mass and charge transfers between the nuclei before capture, with unexpectedly high probability and complexity. Ninety different partitions of the protons and neutrons between the projectile-like and target-like nuclei are observed. Since each is expected to have a different probability of fusion, the early stages of collisions may be crucial in superheavy element synthesis. Our interpretation challenges the current view of fusion, explains both the successes and failures of current capture models, and provides a framework for improved models.

3.
Sports Med ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938533

RESUMEN

BACKGROUND: Molecular-based approaches to understanding concussion pathophysiology provide complex biological information that can advance concussion research and identify potential diagnostic and/or prognostic biomarkers of injury. OBJECTIVE: The aim of this study was to identify gene expression changes in peripheral blood that are initiated following concussion and are relevant to concussion response and recovery. METHODS: We analyzed whole blood transcriptomes in a large cohort of concussed and control collegiate athletes who were participating in the multicenter prospective cohort Concussion Assessment, Research, and Education (CARE) Consortium study. Blood samples were collected from collegiate athletes at preseason (baseline), within 6 h of concussion injury, and at four additional prescribed time points spanning 24 h to 6 months post-injury. RNA sequencing was performed on samples from 230 concussed, 130 contact control, and 102 non-contact control athletes. Differential gene expression and deconvolution analysis were performed at each time point relative to baseline. RESULTS: Cytokine and immune response signaling pathways were activated immediately after concussion, but at later time points these pathways appeared to be suppressed relative to the contact control group. We also found that the proportion of neutrophils increased and natural killer cells decreased in the blood following concussion. CONCLUSIONS: Transcriptome signatures in the blood reflect the known pathophysiology of concussion and may be useful for defining the immediate biological response and the time course for recovery. In addition, the identified immune response pathways and changes in immune cell type proportions following a concussion may inform future treatment strategies.

4.
iScience ; 26(4): 106541, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37102148

RESUMEN

Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.

5.
Phys Med Biol ; 67(22)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36240757

RESUMEN

Objective. Although in heavy-ion therapy, the quantum molecular dynamics (QMD) model is one of the most fundamental physics models providing an accurate daughter-ion production yield in the final state, there are still non-negligible differences with the experimental results. The aim of this study is to improve fragment production in water phantoms by developing a more accurate QMD model in Geant4.Approach. A QMD model was developed by implementing modern Skyrme interaction parameter sets, as well as by incorporating with an ad hocα-cluster model in the initial nuclear state. Two adjusting parameters were selected that can significantly affect the fragment productions in the QMD model: the radius to discriminate a cluster to which nucleons belong after the nucleus-nucleus reaction, denoted byR, and the squared standard deviation of the Gaussian packet, denoted byL. Squared Mahalanobis's distance of fragment yields and angular distributions with 1, 2, and the higher atomic number for the produced fragments were employed as objective functions, and multi-objective optimization (MOO), which make it possible to compare quantitatively the simulated production yields with the reference experimental data, was performed.Main results. The MOO analysis showed that the QMD model with modern Skyrme parameters coupled with the proposedα-cluster model, denoted as SkM*α, can drastically improve light fragments yields in water. In addition, the proposed model reproduced the kinetic energy distribution of the fragments accurately. The optimizedLin SkM*αwas confirmed to be realistic by the charge radii analysis in the ground state formation.Significance. The proposed framework using MOO was demonstrated to be very useful in judging the superiority of the proposed nuclear model. The optimized QMD model is expected to improve the accuracy of heavy-ion therapy dosimetry.


Asunto(s)
Radioterapia de Iones Pesados , Simulación de Dinámica Molecular , Método de Montecarlo , Radioterapia de Iones Pesados/métodos , Radiometría/métodos , Agua
6.
Clin Transl Sci ; 15(8): 1946-1958, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643946

RESUMEN

MicroRNAs (miRNAs) are small RNAs integral in the regulation of gene expression. Analysis of circulating miRNA levels may identify patients with coronary artery disease (CAD) at risk for recurrent myocardial infarction (MI) after percutaneous coronary interventions (PCIs). Subjects with CAD were selected from the GENCATH cardiac catheterization biobank. Subjects with recurrent MI after PCI were compared with those without recurrent MI during follow-up in the initial (n = 48) and replication cohort (n = 67). Next generation MiRNA sequencing was performed on plasma samples and whole blood samples fixed with PAXGENE tubes upon collection. Overall, 164 miRNAs derived from whole blood were differentially expressed in the replication cohort between subjects with and without recurrent MI events (p < 0.05), with 69 remaining significant after false-discovery rate (FDR) correction. None of the miRNAs in plasma was significantly different by FDR among subjects with and without MI. Overall, correlation between direction of effects between plasma and whole blood assays was variable, and only two miRNAs were concordant and significant in both. Associations of miRNA with vascular disease, MI, and thrombosis were further explored. MiRNA profiling has potential as the future biomarker for disease prognosis and treatment response marker in secondary treatment of patients with CAD after PCI. Whole blood may be the preferred sample source as compared to plasma.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Intervención Coronaria Percutánea , Trombosis , Biomarcadores , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Humanos , MicroARNs/genética , Intervención Coronaria Percutánea/efectos adversos , Trombosis/etiología , Trombosis/genética
7.
J Biol Chem ; 298(5): 101894, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378129

RESUMEN

Extensive portions of the human genome have unknown function, including those derived from transposable elements. One such element, the DNA transposon Hsmar1, entered the primate lineage approximately 50 million years ago leaving behind terminal inverted repeat (TIR) sequences and a single intact copy of the Hsmar1 transposase, which retains its ancestral TIR-DNA-binding activity, and is fused with a lysine methyltransferase SET domain to constitute the chimeric SETMAR gene. Here, we provide a structural basis for recognition of TIRs by SETMAR and investigate the function of SETMAR through genome-wide approaches. As elucidated in our 2.37 Å crystal structure, SETMAR forms a dimeric complex with each DNA-binding domain bound specifically to TIR-DNA through the formation of 32 hydrogen bonds. We found that SETMAR recognizes primarily TIR sequences (∼5000 sites) within the human genome as assessed by chromatin immunoprecipitation sequencing analysis. In two SETMAR KO cell lines, we identified 163 shared differentially expressed genes and 233 shared alternative splicing events. Among these genes are several pre-mRNA-splicing factors, transcription factors, and genes associated with neuronal function, and one alternatively spliced primate-specific gene, TMEM14B, which has been identified as a marker for neocortex expansion associated with brain evolution. Taken together, our results suggest a model in which SETMAR impacts differential expression and alternative splicing of genes associated with transcription and neuronal function, potentially through both its TIR-specific DNA-binding and lysine methyltransferase activities, consistent with a role for SETMAR in simian primate development.


Asunto(s)
Genoma Humano , N-Metiltransferasa de Histona-Lisina/genética , Primates/genética , Animales , Evolución Biológica , Encéfalo/metabolismo , Elementos Transponibles de ADN/genética , Estudio de Asociación del Genoma Completo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Secuencias Invertidas Repetidas , Lisina/genética , Primates/metabolismo , Transposasas/química
8.
Sci Adv ; 8(2): eabh3375, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35020422

RESUMEN

Preclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O2, ~21%). However, O2 concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O2 environment in vivo. Although effects of O2 tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air. Similarly, sensitivity of primary cancer cells to anticancer agents is routinely examined at ambient O2. Here, we demonstrate that tumors collected, processed, and propagated at physiologic O2 compared to ambient air display distinct differences in key signaling networks including LGR5/WNT, YAP, and NRF2/KEAP1, nuclear reactive oxygen species, alternative splicing, and sensitivity to targeted therapies. Therefore, evaluating cancer cells under physioxia could more closely recapitulate their physiopathologic status in the in vivo microenvironment.

9.
Diabetes ; 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957512

RESUMEN

Alternative splicing (AS) within the ß cell has been proposed as one potential pathway that may exacerbate autoimmunity and unveil novel immunogenic epitopes in type 1 diabetes (T1D). We employed a computational strategy to prioritize pathogenic splicing events in human islets treated with IL-1ß + IFN-γ as an ex vivo model of T1D and coupled this analysis with a k-mer based approach to predict RNA binding proteins involved in AS. In total, 969 AS events were identified in cytokine-treated islets, with the majority (44.8%) involving a skipped exon. ExonImpact identified 129 events predicted to impact protein structure. AS occurred with high frequency in MHC Class II-related mRNAs, and targeted qPCR validated reduced inclusion of Exon5 in the MHC Class II gene HLA-DMB. Single molecule RNA FISH confirmed increased HLA-DMB splicing in pancreatic sections from human donors with established T1D and autoantibody positivity. Serine and Arginine Rich Splicing Factor 2 was implicated in 37.2% of potentially pathogenic events, including Exon5 exclusion in HLA-DMB. Together, these data suggest that dynamic control of AS plays a role in the ß cell response to inflammatory signals during T1D evolution.

10.
Diabetes ; 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697029

RESUMEN

Alternative splicing (AS) within the ß cell has been proposed as one potential pathway that may exacerbate autoimmunity and unveil novel immunogenic epitopes in type 1 diabetes (T1D). We employed a computational strategy to prioritize pathogenic splicing events in human islets treated with IL-1ß + IFN-γ as an ex vivo model of T1D and coupled this analysis with a k-mer based approach to predict RNA binding proteins involved in AS. In total, 969 AS events were identified in cytokine-treated islets, with the majority (44.8%) involving a skipped exon. ExonImpact identified 129 events predicted to impact protein structure. AS occurred with high frequency in MHC Class II-related mRNAs, and targeted qPCR validated reduced inclusion of Exon5 in the MHC Class II gene HLA-DMB. Single molecule RNA FISH confirmed increased HLA-DMB splicing in pancreatic sections from human donors with established T1D and autoantibody positivity. Serine and Arginine Rich Splicing Factor 2 was implicated in 37.2% of potentially pathogenic events, including Exon5 exclusion in HLA-DMB. Together, these data suggest that dynamic control of AS plays a role in the ß cell response to inflammatory signals during T1D evolution.

11.
Stem Cell Rev Rep ; 17(5): 1840-1854, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33974233

RESUMEN

Aging of hematopoiesis is associated with increased frequency and clonality of hematopoietic stem cells (HSCs), along with functional compromise and myeloid bias, with donor age being a significant variable in survival after HSC transplantation. No clinical methods currently exist to enhance aged HSC function, and little is known regarding how aging affects molecular responses of HSCs to biological stimuli. Exposure of HSCs from young fish, mice, nonhuman primates, and humans to 16,16-dimethyl prostaglandin E2 (dmPGE2) enhances transplantation, but the effect of dmPGE2 on aged HSCs is unknown. Here we show that ex vivo pulse of bone marrow cells from young adult (3 mo) and aged (25 mo) mice with dmPGE2 prior to serial competitive transplantation significantly enhanced long-term repopulation from aged grafts in primary and secondary transplantation (27 % increase in chimerism) to a similar degree as young grafts (21 % increase in chimerism; both p < 0.05). RNA sequencing of phenotypically-isolated HSCs indicated that the molecular responses to dmPGE2 are similar in young and old, including CREB1 activation and increased cell survival and homeostasis. Common genes within these pathways identified likely key mediators of HSC enhancement by dmPGE2 and age-related signaling differences. HSC expression of the PGE2 receptor EP4, implicated in HSC function, increased with age in both mRNA and surface protein. This work suggests that aging does not alter the major dmPGE2 response pathways in HSCs which mediate enhancement of both young and old HSC function, with significant implications for expanding the therapeutic potential of elderly HSC transplantation.


Asunto(s)
Células Madre Hematopoyéticas , Animales , Ratones , Prostaglandinas , Prostaglandinas E , ARN Mensajero
12.
Genomics Proteomics Bioinformatics ; 19(6): 901-912, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33662622

RESUMEN

Alternative splicing of pre-mRNA transcripts is an important regulatory mechanism that increases the diversity of gene products in eukaryotes. Various studies have linked specific transcript isoforms to altered drug response in cancer; however, few algorithms have incorporated splicing information into drug response prediction. In this study, we evaluated whether basal-level splicing information could be used to predict drug sensitivity by constructing doxorubicin-sensitivity classification models with splicing and expression data. We detailed splicing differences between sensitive and resistant cell lines by implementing quasi-binomial generalized linear modeling (QBGLM) and found altered inclusion of 277 skipped exons. We additionally conducted RNA-binding protein (RBP) binding motif enrichment and differential expression analysis to characterize cis- and trans-acting elements that potentially influence doxorubicin response-mediating splicing alterations. Our results showed that a classification model built with skipped exon data exhibited strong predictive power. We discovered an association between differentially spliced events and epithelial-mesenchymal transition (EMT) and observed motif enrichment, as well as differential expression of RBFOX and ELAVL RBP family members. Our work demonstrates the potential of incorporating splicing data into drug response algorithms and the utility of a QBGLM approach for fast, scalable identification of relevant splicing differences between large groups of samples.


Asunto(s)
Neoplasias , Empalme del ARN , Empalme Alternativo , Línea Celular , Doxorrubicina/farmacología , Exones , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
13.
J Neurochem ; 157(4): 1013-1031, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33111353

RESUMEN

The development of selectively bred high and low alcohol-preferring mice (HAP and LAP, respectively) has allowed for an assessment of the polygenetic risk for pathological alcohol consumption and phenotypes associated with alcohol use disorder (AUD). Accumulating evidence indicates that the dorsal striatum (DS) is a central node in the neurocircuitry underlying addictive processes. Therefore, knowledge of differential gene, protein, and phosphorylated protein expression in the DS of HAP and LAP mice may foster new insights into how aberrant DS functioning may contribute to AUD-related phenotypes. To begin to elucidate these basal differences, a complementary and integrated analysis of DS tissue from alcohol-naïve male and female HAP and LAP mice was performed using RNA sequencing, quantitative proteomics, and phosphoproteomics. These datasets were subjected to a thorough analysis of gene ontology, pathway enrichment, and hub gene assessment. Analyses identified 2,108, 390, and 521 significant differentially expressed genes, proteins, and phosphopeptides, respectively between the two lines. Network analyses revealed an enrichment in the differential expression of genes, proteins, and phosphorylated proteins connected to cellular organization, cytoskeletal protein binding, and pathways involved in synaptic transmission and functioning. These findings suggest that the selective breeding to generate HAP and LAP mice may lead to a rearrangement of synaptic architecture which could alter DS neurotransmission and plasticity differentially between mouse lines. These rich datasets will serve as an excellent resource to inform future studies on how inherited differences in gene, protein, and phosphorylated protein expression contribute to AUD-related phenotypes.


Asunto(s)
Alcoholismo/genética , Cuerpo Estriado , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad/genética , Animales , Femenino , Genómica/métodos , Masculino , Ratones , Proteómica/métodos
14.
Respir Care ; 66(1): 113-119, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32962996

RESUMEN

BACKGROUND: Low airway surface pH is associated with many airway diseases, impairs antimicrobial host defense, and worsens airway inflammation. Inhaled Optate is designed to safely raise airway surface pH and is well tolerated in humans. Raising intracellular pH partially prevents activation of SARS-CoV-2 in primary normal human airway epithelial (NHAE) cells, decreasing viral replication by several mechanisms. METHODS: We grew primary NHAE cells from healthy subjects, infected them with SARS-CoV-2 (isolate USA-WA1/2020), and used clinical Optate at concentrations used in humans in vivo to determine whether Optate would prevent viral infection and replication. Cells were pretreated with Optate or placebo prior to infection (multiplicity of infection = 1), and viral replication was determined with plaque assay and nucleocapsid (N) protein levels. Healthy human subjects also inhaled Optate as part of a Phase 2a safety trial. RESULTS: Optate almost completely prevented viral replication at each time point between 24 h and 120 h, relative to placebo, on both plaque assay and N protein expression (P < .001). Mechanistically, Optate inhibited expression of major endosomal trafficking genes and raised NHAE intracellular pH. Optate had no effect on NHAE cell viability at any time point. Inhaled Optate was well tolerated in 10 normal subjects, with no change in lung function, vital signs, or oxygenation. CONCLUSIONS: Inhaled Optate may be well suited for a clinical trial in patients with pulmonary SARS-CoV-2 infection. However, it is vitally important for patient safety that formulations designed for inhalation with regard to pH, isotonicity, and osmolality be used. An inhalational treatment that safely prevents SARS-CoV-2 viral replication could be helpful for treating patients with pulmonary SARS-CoV-2 infection.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Células Epiteliales/efectos de los fármacos , Glicina/farmacología , Soluciones Isotónicas/farmacología , Pulmón/efectos de los fármacos , SARS-CoV-2 , Replicación Viral/efectos de los fármacos , Administración por Inhalación , Antivirales/administración & dosificación , Células Cultivadas/efectos de los fármacos , Glicina/administración & dosificación , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Soluciones Isotónicas/administración & dosificación
15.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L456-L470, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32639867

RESUMEN

Mechanisms driving adaptive developmental responses to chronic high-altitude (HA) exposure are incompletely known. We developed a novel rat model mimicking the human condition of cardiopulmonary adaptation to HA starting at conception and spanning the in utero and postnatal timeframe. We assessed lung growth and cardiopulmonary structure and function and performed transcriptome analyses to identify mechanisms facilitating developmental adaptations to chronic hypoxia. To generate the model, breeding pairs of Sprague-Dawley rats were exposed to hypobaric hypoxia (equivalent to 9,000 ft elevation). Mating, pregnancy, and delivery occurred in hypoxic conditions. Six weeks postpartum, structural and functional data were collected in the offspring. RNA-Seq was performed on right ventricle (RV) and lung tissue. Age-matched breeding pairs and offspring under room air (RA) conditions served as controls. Hypoxic rats exhibited significantly lower body weights and higher hematocrit levels, alveolar volumes, pulmonary diffusion capacities, RV mass, and RV systolic pressure, as well as increased pulmonary artery remodeling. RNA-Seq analyses revealed multiple differentially expressed genes in lungs and RVs from hypoxic rats. Although there was considerable similarity between hypoxic lungs and RVs compared with RA controls, several upstream regulators unique to lung or RV were identified. We noted a pattern of immune downregulation and regulation patterns of immune and hormonal mediators similar to the genome from patients with pulmonary arterial hypertension. In summary, we developed a novel murine model of chronic hypoxia exposure that demonstrates functional and structural phenotypes similar to human adaptation. We identified transcriptomic alterations that suggest potential mechanisms for adaptation to chronic HA.


Asunto(s)
Adaptación Fisiológica/fisiología , Altitud , Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Transcriptoma/fisiología , Animales , Modelos Animales de Enfermedad , Pulmón/fisiopatología , Ratas Sprague-Dawley , Remodelación Vascular/fisiología
16.
Front Genet ; 10: 806, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552100

RESUMEN

Genetic variants can influence the expression of mRNA and protein. Genetic regulatory loci such as expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) exist in several species. However, it remains unclear how human genetic variants regulate mRNA and protein expression. Here, we characterized six mechanistic models for the genetic regulatory patterns of single-nucleotide polymorphisms (SNPs) and their actions on post-transcriptional expression. Data from Yoruba HapMap lymphoblastoid cell lines were analyzed to identify human cis-eQTLs and pQTLs, as well as protein-specific QTLs (psQTLs). Our results indicated that genetic regulatory loci primarily affected mRNA and protein abundance in patterns where the two were well-correlated. While this finding was observed in both humans and mice (57.5% and 70.3%, respectively), the genetic regulatory patterns differed between species, implying evolutionary differences. Mouse SNPs generally targeted changes in transcript expression (51%), whereas in humans, they largely regulated protein abundance, independent of transcription levels (55.9%). The latter independent function can be explained by psQTLs. Our analysis suggests that local functional genetic variants in the human genome mainly modulate protein abundance independent of mRNA levels through post-transcriptional mechanisms. These findings clarify the impact of genetic variation on phenotype, which is of particular relevance to disease risk and treatment response.

17.
J Environ Eng Geophys ; 24(1): 1-17, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33746501

RESUMEN

Ground-penetrating radar (GPR) has a wide range of applications, from geologic mapping to concrete inspection. A recently emerging GPR application is deployment in biological investigations as a non-invasive technique. Geophysical mapping of features such as tree roots and turtle burrows has proved valuable for the understanding of these subsurface systems for ecological, environmental, or engineering purposes. Four case histories of GPR investigations pertaining to animal burrows are described: cutter ants in Brazil, groundhogs in Michigan, and groundhogs, and burrowing bees in Pennsylvania. Cutter ants (Atta spp.) in Amazonian Brazil are known to construct burrows of nearly the same dimensions as groundhogs as they excavate galleries up to 7 m deep for leaf storage. Cutter ant burrows are hazardous to heavy equipment and may also cause loss of mud circulation during rotary drilling. Groundhogs (Marmota monax), found throughout the United States, cause unseen hazards, particularly for equestrian facilities where a sudden collapse can cause severe injuries to both horse and rider. Burrowing bees (Colletes inaequalis) are common in the northeastern United States. The size of the bee burrows is significantly smaller than that of the cutter ants and the groundhogs. The data for these surveys were collected over a twenty-year span, crossing several generations of survey equipment and processing techniques. Together, these four case histories highlight the historic and current capabilities of GPR systems applied to mapping subsurface burrow systems. These examples demonstrate the important impact near surface heterogeneities have in altering ecological, environmental, or engineering systems and the utility of GPR for mapping such heterogeneities.

18.
Beilstein J Org Chem ; 13: 495-501, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28382184

RESUMEN

ADP-ribosyl transferases with diphtheria toxin homology (ARTDs) catalyse the covalent addition of ADP-ribose onto different acceptors forming mono- or poly(ADP-ribos)ylated proteins. Out of the 18 members identified, only four are known to synthesise the complex poly(ADP-ribose) biopolymer. The investigation of this posttranslational modification is important due to its involvement in cancer and other diseases. Lately, metabolic labelling approaches comprising different reporter-modified NAD+ building blocks have stimulated and enriched proteomic studies and imaging applications of ADP-ribosylation processes. Herein, we compare the substrate scope and applicability of different NAD+ analogues for the investigation of the polymer-synthesising enzymes ARTD1, ARTD2, ARTD5 and ARTD6. By varying the site and size of the NAD+ modification, suitable probes were identified for each enzyme. This report provides guidelines for choosing analogues for studying poly(ADP-ribose)-synthesising enzymes.

19.
Sci Rep ; 6: 38776, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27996019

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive disorder characterized by the accumulation of sticky and heavy mucus that can damage several organs. CF shows variable expressivity in affected individuals, but it typically causes respiratory and digestive complications as well as congenital bilateral absence of the vas deferens in males. Individuals with classic CF usually have variants that produce a defective protein from both alleles of the CFTR gene. Individuals with other variants may present with classic, non-classic, or milder forms of CF due to lower levels of functional CFTR protein. This article reports the genetic analysis of a female with features of asthma and mild or non-classic CF. CFTR sequencing demonstrated that she is a carrier for a maternally derived 5T/12TG variant. Deletion/duplication analysis by multiplex ligation-dependent probe amplification (MLPA) showed the presence of an intragenic paternally derived duplication involving exons 7-11 of the CFTR gene. This duplication is predicted to result in the production of a truncated CFTR protein lacking the terminal part of the nucleotide-binding domain 1 (NBD1) and thus is likely to be a non-functioning allele. The combination of this large intragenic duplication and 5T/12TG is the probable cause of the mild or non-classic CF features in this individual.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Mutagénesis Insercional , Adulto , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...